\cos \left(\omega t - \sqrt{\frac{\omega}{2k}}\, x\right) . Differential Equations for Engineers (Lebl), { "5.1:_Sturm-Liouville_problems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.2:_Application_of_Eigenfunction_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.3:_Steady_Periodic_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.E:_Eigenvalue_Problems_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "0:_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1:_First_order_ODEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2:_Higher_order_linear_ODEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3:_Systems_of_ODEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4:_Fourier_series_and_PDEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5:_Eigenvalue_problems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6:_The_Laplace_Transform" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "7:_Power_series_methods" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "8:_Nonlinear_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Appendix_A:_Linear_Algebra" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Appendix_B:_Table_of_Laplace_Transforms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "authorname:lebl", "license:ccbysa", "showtoc:no", "autonumheader:yes2", "licenseversion:40", "source@https://www.jirka.org/diffyqs" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FDifferential_Equations%2FDifferential_Equations_for_Engineers_(Lebl)%2F5%253A_Eigenvalue_problems%2F5.3%253A_Steady_Periodic_Solutions, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\). Solution: Given differential equation is$$x''+2x'+4x=9\sin t \tag1$$ \nonumber \], where \( \alpha = \pm \sqrt{\frac{i \omega }{k}}\). Even without the earth core you could heat a home in the winter and cool it in the summer. The units are cgs (centimeters-grams-seconds). 0000009344 00000 n
We also take suggestions for new calculators to include on the site. Use Euler's formula for the complex exponential to check that \(u = \operatorname{Re} h\) satisfies (5.11). Again, these are periodic since we have $e^{i\omega t}$, but they are not steady state solutions as they decay proportional to $e^{-t}$. + B e^{(1+i)\sqrt{\frac{\omega}{2k}} \, x} . That is, the amplitude does not keep increasing unless you tune to just the right frequency. 11. }\) That is when \(\omega = \frac{n \pi a }{L}\) for odd \(n\text{.}\). }\) To find an \(h\text{,}\) whose real part satisfies (5.11), we look for an \(h\) such that. The temperature swings decay rapidly as you dig deeper. It is very important to be able to study how sensitive the particular model is to small perturbations or changes of initial conditions and of various paramters. \frac{1+i}{\sqrt{2}}\), \(\alpha = \pm (1+i)\sqrt{\frac{\omega}{2k}}\text{. The above calculation explains why a string will begin to vibrate if the identical string is plucked close by. Hence the general solution is, \[ X(x)=Ae^{-(1+i)\sqrt{\frac{\omega}{2k}x}}+Be^{(1+i)\sqrt{\frac{\omega}{2k}x}}. \], That is, the string is initially at rest. \end{equation*}, \begin{equation} }\), It seems reasonable that the temperature at depth \(x\) also oscillates with the same frequency. }\) For example in cgs units (centimeters-grams-seconds) we have \(k=0.005\) (typical value for soil), \(\omega = \frac{2\pi}{\text{seconds in a year}} It is not hard to compute specific values for an odd extension of a function and hence \(\eqref{eq:17}\) is a wonderful solution to the problem. Did the drapes in old theatres actually say "ASBESTOS" on them? The natural frequencies of the system are the (circular) frequencies \(\frac{n\pi a}{L}\) for integers \(n \geq 1\). 0000005765 00000 n
+ B \sin \left( \frac{\omega L}{a} \right) - For example in cgs units (centimeters-grams-seconds) we have \(k=0.005\) (typical value for soil), \(\omega = \frac{2\pi}{\text{seconds in a year}}=\frac{2\pi}{31,557,341}\approx 1.99\times 10^{-7}\). This matric is also called as probability matrix, transition matrix, etc. \end{array}\tag{5.6} In other words, we multiply the offending term by \(t\). \nonumber \], The steady periodic solution has the Fourier series, \[ x_{sp}(t)= \dfrac{1}{4}+ \sum_{\underset{n ~\rm{odd}}{n=1}}^{\infty} \dfrac{2}{\pi n(2-n^2 \pi^2)} \sin(n \pi t). The first is the solution to the equation And how would I begin solving this problem? And how would I begin solving this problem? \nonumber \], \[\label{eq:20} u_t=ku_{xx,}~~~~~~u(0,t)=A_0\cos(\omega t). As before, this behavior is called pure resonance or just resonance. for the problem ut = kuxx, u(0, t) = A0cos(t). \sin (x) \mybxbg{~~ Can I use the spell Immovable Object to create a castle which floats above the clouds? Or perhaps a jet engine. \right) . a multiple of \(\frac{\pi a}{L}\text{. {{}_{#3}}} You need not dig very deep to get an effective refrigerator, with nearly constant temperature. 0000006517 00000 n
\newcommand{\mybxbg}[1]{\boxed{#1}} \cos (x) - }\), \(\sin (\frac{\omega L}{a}) = 0\text{. Differential Equations for Engineers (Lebl), { "4.01:_Boundary_value_problems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.02:_The_trigonometric_series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.03:_More_on_the_Fourier_series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.04:_Sine_and_cosine_series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.05:_Applications_of_Fourier_series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.06:_PDEs_separation_of_variables_and_the_heat_equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.07:_One_dimensional_wave_equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.08:_DAlembert_solution_of_the_wave_equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.09:_Steady_state_temperature_and_the_Laplacian" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.10:_Dirichlet_Problem_in_the_Circle_and_the_Poisson_Kernel" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.E:_Fourier_Series_and_PDEs_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "0:_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1:_First_order_ODEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2:_Higher_order_linear_ODEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "3:_Systems_of_ODEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4:_Fourier_series_and_PDEs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5:_Eigenvalue_problems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "6:_The_Laplace_Transform" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "7:_Power_series_methods" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "8:_Nonlinear_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Appendix_A:_Linear_Algebra" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Appendix_B:_Table_of_Laplace_Transforms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "authorname:lebl", "license:ccbysa", "showtoc:no", "autonumheader:yes2", "licenseversion:40", "source@https://www.jirka.org/diffyqs" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FDifferential_Equations%2FDifferential_Equations_for_Engineers_(Lebl)%2F4%253A_Fourier_series_and_PDEs%2F4.05%253A_Applications_of_Fourier_series, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 4.6: PDEs, Separation of Variables, and The Heat Equation. For \(c>0\), the complementary solution \(x_c\) will decay as time goes by. \nonumber \], \[ F(t)= \sum^{\infty}_{ \underset{n ~\rm{odd}}{n=1} } \dfrac{4}{\pi n} \sin(n \pi t). I don't know how to begin. }\), \(\alpha = \pm \sqrt{\frac{i\omega}{k}}\text{. Connect and share knowledge within a single location that is structured and easy to search. Try running the pendulum with one set of values for a while, stop it, change the path color, and "set values" to ones that Since $~B~$ is Connect and share knowledge within a single location that is structured and easy to search. -1 This series has to equal to the series for \(F(t)\). The general form of the complementary solution (or transient solution) is $$x_{c}=e^{-t}\left(a~\cos(\sqrt 3~t)+b~\sin(\sqrt 3~t)\right)$$where $~a,~b~$ are constants. Find more Education widgets in Wolfram|Alpha. I don't know how to begin. }\) We studied this setup in Section4.7. \[f(x)=-y_p(x,0)=- \cos x+B \sin x+1, \nonumber \]. For \(k=0.01\text{,}\) \(\omega = 1.991 \times {10}^{-7}\text{,}\) \(A_0 = 25\text{. 2A + 3B &= 0\cr}$$, Therefore steady state solution is $\displaystyle x_p(t) = \frac{3}{13}\,\sin(t) - \frac{2}{13}\,\cos(t)$. If you use Euler's formula to expand the complex exponentials, note that the second term is unbounded (if \(B \not = 0\)), while the first term is always bounded. 15.27. Examples of periodic motion include springs, pendulums, and waves. y = It seems reasonable that the temperature at depth \(x\) will also oscillate with the same frequency. We want to find the solution here that satisfies the above equation and, \[\label{eq:4} y(0,t)=0,~~~~~y(L,t)=0,~~~~~y(x,0)=0,~~~~~y_t(x,0)=0. Hb```f``k``c``bd@ (.k? o0AO T @1?3l
+x#0030\``w``J``:"A{uE
'/%xfa``KL|& b)@k Z wD#h
endstream
endobj
511 0 obj
179
endobj
474 0 obj
<<
/Type /Page
/Parent 470 0 R
/Resources << /ColorSpace << /CS2 481 0 R /CS3 483 0 R >> /ExtGState << /GS2 505 0 R /GS3 506 0 R >>
/Font << /TT3 484 0 R /TT4 477 0 R /TT5 479 0 R /C2_1 476 0 R >>
/ProcSet [ /PDF /Text ] >>
/Contents [ 486 0 R 488 0 R 490 0 R 492 0 R 494 0 R 496 0 R 498 0 R 500 0 R ]
/MediaBox [ 0 0 612 792 ]
/CropBox [ 0 0 612 792 ]
/Rotate 0
/StructParents 0
>>
endobj
475 0 obj
<<
/Type /FontDescriptor
/Ascent 891
/CapHeight 656
/Descent -216
/Flags 34
/FontBBox [ -568 -307 2028 1007 ]
/FontName /DEDPPC+TimesNewRoman
/ItalicAngle 0
/StemV 94
/XHeight 0
/FontFile2 503 0 R
>>
endobj
476 0 obj
<<
/Type /Font
/Subtype /Type0
/BaseFont /DEEBJA+SymbolMT
/Encoding /Identity-H
/DescendantFonts [ 509 0 R ]
/ToUnicode 480 0 R
>>
endobj
477 0 obj
<<
/Type /Font
/Subtype /TrueType
/FirstChar 32
/LastChar 126
/Widths [ 250 0 0 0 0 0 0 0 333 333 0 0 250 0 250 278 500 500 500 500 500 500
500 500 500 500 278 278 0 0 564 0 0 722 667 667 0 611 556 0 722
333 0 0 0 0 722 0 0 0 0 556 611 0 0 0 0 0 0 0 0 0 0 0 0 444 500
444 500 444 333 500 500 278 0 500 278 778 500 500 500 500 333 389
278 500 500 722 500 500 444 0 0 0 541 ]
/Encoding /WinAnsiEncoding
/BaseFont /DEDPPC+TimesNewRoman
/FontDescriptor 475 0 R
>>
endobj
478 0 obj
<<
/Type /FontDescriptor
/Ascent 891
/CapHeight 0
/Descent -216
/Flags 98
/FontBBox [ -498 -307 1120 1023 ]
/FontName /DEEBIF+TimesNewRoman,Italic
/ItalicAngle -15
/StemV 0
/XHeight 0
/FontFile2 501 0 R
>>
endobj
479 0 obj
<<
/Type /Font
/Subtype /TrueType
/FirstChar 65
/LastChar 120
/Widths [ 611 611 667 0 0 611 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 500 0 444 500 444 0 0 500 278 0 444 0 722 500 500 500 0 389
389 278 0 444 667 444 ]
/Encoding /WinAnsiEncoding
/BaseFont /DEEBIF+TimesNewRoman,Italic
/FontDescriptor 478 0 R
>>
endobj
480 0 obj
<< /Filter /FlateDecode /Length 270 >>
stream
- \cos x + \end{equation}, \begin{equation*} }\), \(g(x) = -\frac{\partial y_p}{\partial t}(x,0) = 0\text{. 2.6: Forced Oscillations and Resonance - Mathematics LibreTexts \end{equation*}, \begin{equation*} Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. Further, the terms \( t \left( a_N \cos \left( \dfrac{N \pi}{L}t \right)+ b_N \sin \left( \dfrac{N \pi}{L}t \right) \right) \) will eventually dominate and lead to wild oscillations. 0000008732 00000 n
ODEs: Applications of Fourier series - University of Victoria Learn more about Stack Overflow the company, and our products. What is differential calculus? Could a subterranean river or aquifer generate enough continuous momentum to power a waterwheel for the purpose of producing electricity? Write \(B= \frac{ \cos(1)-1 }{ \sin(1)} \) for simplicity. When an oscillator is forced with a periodic driving force, the motion may seem chaotic. Suppose we have a complex-valued function, We look for an \(h\) such that \(\operatorname{Re} h = u\text{. \end{equation*}, \begin{equation*} 0000003847 00000 n
0000010047 00000 n
We define the functions \(f\) and \(g\) as, \[f(x)=-y_p(x,0),~~~~~g(x)=- \frac{\partial y_p}{\partial t}(x,0). PDF LC. LimitCycles - Massachusetts Institute of Technology Any solution to \(mx''(t)+kx(t)=F(t)\) is of the form \(A \cos(\omega_0 t)+ B \sin(\omega_0 t)+x_{sp}\). Extracting arguments from a list of function calls. PDF 5.8 Resonance - University of Utah }\) We define the functions \(f\) and \(g\) as. Remember a glass has much purer sound, i.e. Hence to find \(y_c\) we need to solve the problem, \[\begin{align}\begin{aligned} & y_{tt} = y_{xx} , \\ & y(0,t) = 0 , \quad y(1,t) = 0 , \\ & y(x,0) = - \cos x + B \sin x +1 , \\ & y_t(x,0) = 0 .\end{aligned}\end{align} \nonumber \], Note that the formula that we use to define \(y(x,0)\) is not odd, hence it is not a simple matter of plugging in to apply the DAlembert formula directly! Thanks! Also find the corresponding solutions (only for the eigenvalues). 0000010700 00000 n
and after differentiating in \(t\) we see that \(g(x) = -\frac{\partial y_p}{\partial t}(x,0) = 0\text{. Basically what happens in practical resonance is that one of the coefficients in the series for \(x_{sp}\) can get very big. Suppose that \( k=2\), and \( m=1\). 0000001526 00000 n
What is Wario dropping at the end of Super Mario Land 2 and why? Remember a glass has much purer sound, i.e. {{}_{#2}}} Consider a mass-spring system as before, where we have a mass \(m\) on a spring with spring constant \(k\), with damping \(c\), and a force \(F(t)\) applied to the mass. Let us assume say air vibrations (noise), for example a second string. Site design / logo 2023 Stack Exchange Inc; user contributions licensed under CC BY-SA. \nonumber \], \[ F(t)= \dfrac{c_0}{2}+ \sum^{\infty}_{n=1} c_n \cos(n \pi t)+ d_n \sin(n \pi t). \nonumber \], \[ x_p''(t)= -6a_3 \pi \sin(3 \pi t) -9 \pi^2 a_3 t \cos(3 \pi t) + 6b_3 \pi \cos(3 \pi t) -9 \pi^2 b_3 t \sin(3 \pi t) +\sum^{\infty}_{ \underset{\underset{n \neq 3}{n ~\rm{odd}}}{n=1} } (-n^2 \pi^2 b_n) \sin(n \pi t). ]{#1 \,\, #2} }\) Note that \(\pm \sqrt{i} = \pm HTMo 9&H0Z/ g^^Xg`a-.[g4 `^D6/86,3y. 4.5: Applications of Fourier Series - Mathematics LibreTexts Find the steady periodic solution to the equation, \[\label{eq:19} 2x''+18 \pi^2 x=F(t), \], \[F(t)= \left\{ \begin{array}{ccc} -1 & {\rm{if}} & -1
Rowville Secondary College Fees,
Articles S